Robust nonparametric kernel regression estimator

نویسندگان

  • Ge Zhao
  • Yanyuan Ma
چکیده

In robust nonparametric kernel regression context,weprescribemethod to select trimming parameter and bandwidth. Through solving estimating equations, we control outlier effect through combining weighting and trimming. We show asymptotic consistency, establish bias, variance properties and derive asymptotics. © 2016 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation

For longitudinal data, when the within-subject covariance is misspecified, the semiparametric regression estimator may be inefficient. We propose a method that combines the efficient semiparametric estimator with nonparametric covariance estimation, and is robust against misspecification of covariance models. We show that kernel covariance estimation provides uniformly consistent estimators for...

متن کامل

Nonparametric regression estimation on closed Riemannian manifolds

The nonparametric estimation of the regression function of a real-valued random variable Y on a random object X valued in a closed Riemannian manifold M is considered. A regression estimator which generalizes kernel regression estimators on Euclidean sample spaces is introduced. Under classical assumptions on the kernel and the bandwidth sequence, the asymptotic bias and variance are obtained, ...

متن کامل

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

Nonparametric Regression With Missing Outcomes Using Weighted Kernel Estimating Equations.

We consider nonparametric regression of a scalar outcome on a covariate when the outcome is missing at random (MAR) given the covariate and other observed auxiliary variables. We propose a class of augmented inverse probability weighted (AIPW) kernel estimating equations for nonparametric regression under MAR. We show that AIPW kernel estimators are consistent when the probability that the outc...

متن کامل

Mean-Squared Error Analysis of Kernel Regression Estimator for Time Series

Because of a lack of a priori information, the minimum mean-squared error predictor, the conditional expectation, is often not known for a non-Gaussian time series. We show that the nonparametric kernel regression estimator of the conditional expectation is mean-squared consistent for a time series: When used as a predictor, the estimator asymptotically matches the mean-squared error produced b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016